**Product Stewardship Summary**

**Phenol**

**General Statement**

Pure phenol exists as colorless-to-white, flammable crystals with a distinctive “sickly sweet” odor detectable at very low concentrations. It is used directly in a number of consumer products as a disinfectant. Phenol is also used in the production of many high-performance resins. Phenolic resins are used in applications as diverse as aerospace heat shields and automotive clutches. Phenolic adhesives are used extensively to bond high performance automotive parts.

Exposure to the low levels of phenol typically present in the natural environment and consumer products is not expected to be harmful to human health or the environment. However, exposure to highly concentrated phenol in the work environment can be extremely and immediately hazardous to workers. Therefore, exposure must be adequately controlled.

**Chemical Identity**

Name: Phenol  
Brand Names: Used in the production of Arofene™ resins and Pliobond™ adhesives  
Chemical name (IUPAC): phenol  
CAS number(s): 108-95-2  
EC number: 203-632-7  
Molecular formula: C₆H₅O

**Uses and Applications**

Phenol occurs naturally as well as through deliberate manufacture. Phenol is used in the creation of many consumer products such as plastics, disinfectants in household cleaning products, and in the production of mouthwashes, throat sprays, and throat lozenges. Ashland uses phenol in the production of a number of resins and adhesives. These products are used in a variety of applications including aerospace, automotive, and filtration systems. Phenolic adhesives are used in many high-performance applications, including drum and disc brakes, clutch plates, brake shims, and vibration dampers.
Physical/Chemical Properties

Phys/Chem Safety Assessment

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Colorless to yellow or light pink crystals</td>
</tr>
<tr>
<td>Physical state</td>
<td>Solid</td>
</tr>
<tr>
<td>Color</td>
<td>Colorless to yellow or light pink</td>
</tr>
<tr>
<td>Odor</td>
<td>Aromatic</td>
</tr>
<tr>
<td>Density</td>
<td>1.07 g/cm³ @ 20°C</td>
</tr>
<tr>
<td>Melting / boiling point</td>
<td>40.9°C / 191.8°C</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not classified</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not classified</td>
</tr>
<tr>
<td>Self-ignition temperature</td>
<td>505°C</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>0.2 hPa @ 25°C</td>
</tr>
<tr>
<td>Mol weight</td>
<td>94.11 g/mol</td>
</tr>
<tr>
<td>Water solubility</td>
<td>70 g/L @ 25°C</td>
</tr>
<tr>
<td>Flash point</td>
<td>82°C</td>
</tr>
<tr>
<td>Octanol-water partition coefficient (LogKow)</td>
<td>1.37 @ 30°C</td>
</tr>
</tbody>
</table>

Exposure, Hazard and Safety Assessment

The following section describes possible exposures scenarios and hazards associated with phenol. The exposure assessment describes both the amount of and the frequency with which a chemical substance reaches a person, a population of people, or the environment. Hazard refers to the inherent properties of a substance that make it capable of causing harm to human health or the environment. The safety assessment reports the possibility of a harmful event arising from exposure to a chemical or physical agent under specific conditions. Just because a substance may possess potentially harmful properties does not mean that it automatically poses a risk. It is not possible to make that determination without understanding the exposure.

Human Health Effects

Human Exposure Assessment

Consumer: Airborne phenol arises from many sources, including automobile exhaust, primary and secondhand cigarette smoke, wood burning, and industrial release. Phenol may also be present in surface waters, rainwater, drinking water, industrial and urban runoff, and in the soils around hazardous waste sites. Low levels of phenol are also found in fried or smoked foods such as smoked summer sausage, fried bacon, fried chicken, and black fermented tea. Ingestion also occurs through several consumer products containing phenol, such as throat lozenges or sore throat sprays.

Worker: Workers in several industries may also be exposed to phenol, such as the petroleum, plastics, herbicide, and wood preservative treatment industries. Workplace exposure occurs through breathing, dermal exposure from contaminated air, or by direct dermal exposure to phenol-containing products.
**Human Hazard Assessment**

<table>
<thead>
<tr>
<th>Effect Assessment</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Toxicity</td>
<td>H301: Toxic if swallowed</td>
</tr>
<tr>
<td>Oral / inhalation / dermal</td>
<td>H331: Toxic if inhaled</td>
</tr>
<tr>
<td>Iritation / corrosion</td>
<td>H314: Causes severe skin burns and eye damage.</td>
</tr>
<tr>
<td>Skin / eye / respiratory test</td>
<td></td>
</tr>
<tr>
<td>Sensitization</td>
<td>Does not cause allergic reactions upon contact with skin</td>
</tr>
<tr>
<td>Toxicity after repeated exposure</td>
<td>H373: May cause damage to organs through prolonged or repeated exposure.</td>
</tr>
<tr>
<td>Oral / inhalation / dermal</td>
<td></td>
</tr>
<tr>
<td>Genotoxicity / Mutagenicity</td>
<td>H341: Suspected of causing genetic defects.</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Not considered as a carcinogen</td>
</tr>
<tr>
<td>Reproductive / Developmental Toxicity</td>
<td>Not toxic to reproduction or to unborn children</td>
</tr>
<tr>
<td>Aspiration hazard</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

**Human Health Safety Assessment**

**Consumer:** Consumer exposure to dangerous levels of phenol is unlikely under normal use of consumer products. Overuse of products containing phenol such as sore throat sprays or throat lozenges may be hazardous.

**Worker:** Exposure to highly concentrated phenol is very hazardous. Inhalation and dermal exposure are highly irritating to skin, eyes, and mucous membranes. A minimum lethal oral dose of approximately 70mg/kg has been estimated for human adults (just over one teaspoon for an average adult male). Primary phenol toxicity is at the site of contact, though prolonged and/or excessive exposure may lead to liver, immune system, and cardiovascular toxicity. Phenol is rapidly absorbed through the skin, and large dermal exposures can quickly lead to severe systemic toxicity, including excitability, loss of balance and coordination, confusion, unconsciousness, coma, respiratory failure, and death. Phenol acts as a local anesthetic, so injuries from direct exposure may feel less severe than they actually are.

**Environmental Effects**

**Environmental Exposures**

Phenol is not expected to bioaccumulate, and low doses of phenol are quickly metabolized. Phenol quickly breaks down in the air, with a half-life of about 3/5 of a day. Phenol is readily biodegradable in natural waters, as long as concentrations are not high enough to kill aquatic organisms prior to metabolism. Phenol can accumulate in dry soil, but the presence of moisture will cause it to tend to leach into groundwater or soil moisture.

**Environmental Hazard Assessment**

<table>
<thead>
<tr>
<th>Effect Assessment</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic toxicity</td>
<td>Not toxic to aquatic organisms</td>
</tr>
</tbody>
</table>
### Fate and behavior

<table>
<thead>
<tr>
<th>Fate and behavior</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodegradation</td>
<td>Readily biodegradable</td>
</tr>
<tr>
<td>Bioaccumulation potential</td>
<td>Unlikely to bioaccumulate.</td>
</tr>
<tr>
<td>PBT / vPvB conclusion</td>
<td>This substance is not considered to be persistent, bioaccumulating and toxic (PBT) or very persistent and very bioaccumulating (vPvB)</td>
</tr>
</tbody>
</table>

### Environmental Safety Assessment

High concentrations of phenol are very toxic to aquatic, terrestrial, and plant life. Low concentrations are not very toxic, and are rapidly biodegraded.

### Risk Management Recommendations

Exposure to phenol in the workplace can be controlled by sufficient ventilation and proper handling and storage techniques. Examples include: ventilation system, proper protective equipment such as eye protection (i.e., splash proof goggles), normal work clothing which covers arms and legs, and phenol resistant gloves.

Consumer exposure to phenol rarely occurs at levels known to cause either acute or chronic toxicity. In the case of dermal exposure to concentrated phenol, it is vital to thoroughly wash the affected areas as soon as possible. Industrial exposure should be managed by the use of adequate ventilation, gloves, goggles, protective clothing, and good hygiene.

Exposure to phenol in the workplace is covered by established exposure limits. A partial list of references follows:

- **US OSHA PEL**: 5 ppm (8h TWA)
- **ACGIH TLV**: 5 ppm (8h TWA)

### Regulatory Agency Review

Phenol is listed on:
- REACH registered substances (EC) 1907/2006
- TSCA inventory
- Canada’s DSL list
- Australia Index of Chemical Substances
- China Inventory of Existing Chemical Substances
- Japan Inventory of Existing and New Chemical Substances
- Korea Existing Chemicals Inventory
- New Zealand Inventory of Chemicals
- Philippines Inventory of Chemicals and Chemical Substances
- Group 3 carcinogen by the International Agency for Research on Cancer (IARC)

### Regulatory Information / Classification and Labeling

Under the Globally Harmonized System for classification and labeling (GHS), substances are classified according to their physical, health, and environmental hazards. The hazards are communicated via specific labels and the (Extended) SDS. GHS attempts to standardize hazard communication so that the intended audience (workers, consumers, transport workers, and emergency responders) can better understand the hazards of the chemicals in use.
GHS Classification:

Acute toxicity (oral): Category 3
Acute toxicity (inhalation): Category 3
Acute toxicity (dermal): Category 3
Skin corrosion/irritation: Category 1
Serious eye damage/eye irritation: Category 1
Germ cell mutagenicity: Category 2
Specific target organ toxicity (repeated exposure): Category 2 (skin, nervous system, liver, kidney)
Aquatic acute toxicity: Category 2
Aquatic chronic toxicity: Category 2

Hazard Statements:

H301: Toxic if swallowed
H311: Toxic in contact with skin
H314: Causes severe skin burns and eye damage
H318: Causes serious eye damage
H331: Toxic if inhaled
H341: Suspected of causing genetic defects
H373: May cause damage to organs through prolonged or repeated exposure

Signal Word:

Danger

Precautionary Statements:

P262: Do not get in eyes, on skin, or on clothing
P281: Use personal protective equipment as required
P302+P352: IF ON SKIN: Wash with plenty of soap and water
P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P309+P311: IF exposed or if you feel unwell: Call a POISON CENTER or doctor/physician
P405: Store locked up.

Hazard Pictograms:
Conclusion

While concentrated phenol is very hazardous, exposure to small amounts of phenol from consumer products and foods is not expected to be hazardous. Industrial use of phenol must involve precautions to limit the potential for exposure to concentrated phenol or phenol vapor.

Contact Information with Company

Ashland LLC
5200 Blazer Parkway
Dublin, Ohio 43017
http://www.ashland.com/contact

Date of Issue: December 15, 2018
Revision: 2

Additional Information

For more information on GHS, visit http://www.osha.gov/dsg/hazcom/ghsguideoct05.pdf or http://live.unece.org/trans/danger/publi/ghs/ghs_welcome_e.html.
Ashland product stewardship summaries are located at http://www.ashland.com/sustainability/product/product-stewardship

Disclaimer

All statements, information and data presented herein are believed to be accurate and reliable, but are not to be taken as a guarantee, an express warranty, or an implied warranty of merchantability or fitness for a particular purpose, or representation, express or implied, for which Ashland and its subsidiaries assume legal responsibility.

REACH registration is specific to Importers/Manufacturers that place the chemical on the EU market, and is specific to registered uses. Inclusion on the list of REACH Registered Substances does not automatically imply registration by Ashland.

Inclusion on the New Zealand Inventory of Chemicals applies only to the pure substance listed. The importer of record must determine whether or not their substances are in compliance.