enhancing toothpaste foam quality and longevity

description
Benecel™ E4M HPMC is a cellulose-based, polymeric surfactant which enhances foam characteristics and exhibits interaction with surfactants. It has been shown to increase foam volume and produce increased amount of smaller bubbles to enhance creaminess in model toothpaste formulations containing different surfactant systems. In addition, Benecel™ E4M HPMC exhibits synergistic foam enhancement with Aqualon™/Blanose™ carboxymethyl cellulose (CMC) in model toothpaste systems with cocamidopropyl betaine (CAPB) and sodium lauryl sarcosinate.

Benecel™ HPMC is high-purity, water-soluble, nonionic cellulose ether designed for use as a thickener, foam enhancer, foam stabilizer, water-binder, film former, as well as a co-suspending and co-emulsifying agent.

how it works
Benecel™ HPMC associates with surfactants and adsorbs at the air-water interfaces (figure 1). As a result, it impacts foam by (1) stabilizing bubble film by reducing drainage and (2) slowing the rupture and decay of bubble lamellar structure.

key features and benefits
- acts as highly efficient foam booster and stabilizer
- forms stable foam (higher wall elasticity)
- improves foam volume
- enhances the brushing experience by enhancing foam texture
- builds creamy and dense foam
- is compatible with anionic and cationic ingredients
- works with a wide-range of surfactant types
- exhibits synergy with aqualon™/blanose™ carboxymethyl cellulose (CMC) in improved foam performance

Although toothpastes are formulated to deliver a range of oral health benefits, foam is an important attribute. It is common for consumers to equate higher foam volume with higher cleaning efficacy and thus cleaning performance. A rich and creamy foam can be a signal for quality and luxury; high foam volume can be a consumer preference and long-lasting foam can improve compliance. Thus, it is important for a toothpaste to have a foam profile to enhance the brushing experience.

Benecel™ HPMC idealized structure of hydroxypropyl methyl cellulose [HPMC]

Typical properties:
- appearance: white to off-white powder
- Brookfield viscosity, 2% aqueous solution: 2,700–5,040 cP
- surface tension (0.1% at 20 °C): 44–55 mN/m
- methoxyl content (%): 28–30
- hydroxypropyl content (%): 7–12
- particle size, Dv90, laser (µm): 170–250

figure 1. proposed foam mechanism shows hpmc film at air/water interface

chemical structure

Ashland
always solving
boost foam
Sodium lauryl sulfate (SLS) is a good foaming surfactant; however, there are drawbacks to high levels of SLS for foam generation. Benecel™ E4M HPMC has been shown to boost foam from a model toothpaste with SLS. The combination of SLS and Benecel™ E4M HPMC in a model toothpaste increases foam volume as shown in figure 2. The addition of 0.3% Benecel™ E4M HPMC also increases bubble count significantly and reduces mean bubble area and bubble radius, thus improving overall foam performance.

synergy with cellulose gum
Toothpastes with low foaming surfactants, such as cocamidopropyl betaine (CAPB), can see improvements in foam characteristics with the addition of Benecel™ E4M HPMC alone or in combination with carboxymethylcellulose (CMC).

As shown in figure 4, a model toothpaste with 0.3% 1:1 HPMC to CMC yields the same foam volume as a toothpaste with 0.3% Benecel™ E4M HPMC alone. The optimum ratio between HPMC to CMC is dependent on the toothpaste formulation.

form creamy and dense foam
Sensorial experiences are key to engaging consumers. A product’s foam profile can help create a pleasant and desirable brushing experience. By creating a creamier and denser foam, the brushing experience can be enhanced. The addition of Benecel™ E4M HPMC to a model toothpaste has been shown to result in creamier foam.

In the pictures (figure 3), the bubble size is larger and the number of bubbles in a defined area is lower for control model toothpaste with 1.5% SLS compared to the model toothpaste with both SLS and Benecel™ E4M HPMC. With the addition of 0.3% Benecel™ E4M HPMC, the bubble size is smaller and the number of bubbles in a defined area is higher indicating a creamier toothpaste.

create long-lasting foam
As consumers equate foam with cleaning efficacy, it is important to provide a long-lasting foam experience. Toothpastes with sarcosinate surfactants typically provide less foam. The addition of Benecel™ E4M HPMC to toothpaste can improve foam volume and foam stability.

The addition of Benecel™ E4M HPMC in combination with Aqualon™/Blanose™ CMC to a model toothpaste with sodium lauryl sarcosinate (sarcosinate) results in initial high bubble count (figure 5). In addition, the bubble count for the toothpaste remains higher over time demonstrating improved foam stability compared to the control.

The information contained in this brochure and the various products described are intended for use only by persons having technical skill and at their own discretion and risk after they have performed necessary technical investigations, tests and evaluations of the products and their uses. Certain end uses of these products may be regulated pursuant to rules or regulations governing medical devices, drug uses, or pesticidal or antimicrobial uses. It is the end user’s responsibility to determine the applicability of such regulations to its products.

All statements, information, and data presented herein are believed to be accurate and reliable, but are not to be taken as a guarantee of fitness for a particular purpose, or representation, express or implied, for which seller assumes legal responsibility. No freedom to use any patent owned by Ashland, its subsidiaries, or its suppliers is to be inferred.

regional centers
North America — Bridgewater, NJ USA
Tel: +1 800 505 8984
Europe — Switzerland
Tel: +41.52.560.5538
Fax: +41.52.560.5599
Middle East, Asia — Shanghai
Tel: +86 21 61484646
India — Mumbai
Tel: +91 22 61484646
Latin America — Sao Paulo, Brazil
Tel: +55 11 3649 0455
Asia Pacific — Singapore
Tel: +65 6775 5366
ashland.com/oralcare
® Registered trademark, Ashland or its subsidiaries, registered in various countries
™ Trademark, Ashland or its subsidiaries, registered in various countries
© 2019, Ashland / PHC19-066